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Abstract
Cryptosporidium parvum is recognized as a major cause of diarrheal disease in neonatal bovine
calves. In addition, this protozoan parasite has emerged as an important cause of disease in
both immunocompromised and immunocompetent humans. Despite years of research, no con-
sistently effective means of prevention or treatment are readily available for cryptosporidiosis
in any species. Infection through ingestion of contaminated water has been widely docu-
mented; C. parvum was reported to be responsible for the largest waterborne outbreak of
infectious disease in US history. In addition to its role as a primary disease agent, C. parvum
has potential to initiate or exacerbate other gastrointestinal disorders, such as inflammatory
bowel disease. Thus, control of C. parvum infection in both animals and humans remains an
important objective. Research in our laboratory has focused on understanding mechanisms of
resistance to C. parvum. We have demonstrated that acquisition of intestinal flora increases
resistance to C. parvum. Substances present in the intestinal mucosa of adult animals can trans-
fer resistance when fed to susceptible infants. Both expression of intestinal enzymes and rate
of proliferation of epithelial cells may be altered following C. parvum infection. These and
other changes may have profound effects on host resistance to C. parvum.
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Introduction

In this review I will present a brief history of
Cryptosporidium parvum, highlighting what is known of
the host immune response to the parasite, and the
paucity of effective drug treatments or vaccines against
infection. This information is provided for background;
excellent reviews are available that explore these topics
in more depth (Fayer et al., 2000; Chen et al., 2002;
Riggs, 2002). In the remainder of the paper, I will sum-
marize both published and unpublished studies from my
laboratory that were designed to explore mechanisms of
resistance to C. parvum that do not seem to be related
directly to a specific acquired immune response. We
believe that understanding the innate or age-related
resistance to C. parvum infection (best exemplified by

rodent models) may lead to better understanding of C.
parvum infection in other species. Among the puzzles
still unsolved: why are bovine calves so commonly
infected with C. parvum and why do their resistant
mothers fail to transmit effective immunity to infection?
Why do humans appear to be one of the few species
that have a highly susceptible adult population, and
also, in some cases, seem susceptible to reinfection? The
answers to these and other questions may prove to be
found in host-response strategies that complement spe-
cific acquired immunity.

A brief history of C. parvum

C. parvum is an intestinal protozoan parasite that causes
enteric infection and diarrhea in many species of mam-
mals (O’Donoghue, 1995; Fayer et al., 1997, 2000). C.
parvum infection in calves has become a major eco-*E-mail: jharp@nadc.ars.usda.gov



nomic concern for the producer. In a nationwide survey
of 7369 preweaning dairy calves on 1103 farms, C.
parvum was found in 22.4% of the calves. At least one
calf tested positive on 59.1% of the farms tested. The fre-
quency of infection was highest in calves aged 1–3
weeks. Forty-eight percent of the calves in this age
group were positive for C. parvum (Garber et al., 1994).
C. parvum can cause diarrheal disease in calves in the
absence of any other pathogens (Heine et al., 1984b).
Symptoms of cryptosporidiosis in calves include loss of
appetite, weakness, depression and profuse watery diar-
rhea. Upon necropsy, intestines from infected calves
show inflammation of intestinal epithelium, crypt hyper-
plasia and destruction of intestinal villi (Heine et al.,
1984b). In addition to its role as a primary pathogen, C.
parvum is frequently found in association with other
organisms known to cause calf diarrhea, such as
Escherichia coli, rotavirus and coronavirus (Moon et al.,
1978). It is likely that destruction of the intestinal epithe-
lium by cryptosporidia increases the susceptibility of
young calves to infection with other enteric pathogens
(Casey, 1991).

Recently, much attention has been directed to C.
parvum as a cause of human disease. In immunocompe-
tent humans infected with C. parvum, symptoms consist
primarily of diarrhea, abdominal pain and, less fre-
quently, vomiting. Disease is usually self-limiting,
resolving in a few weeks. In contrast, in immunocom-
promised hosts, such as patients with acquired immune
deficiency syndrome (AIDS), C. parvum infection can be
a life-threatening disease (reviewed by Kosek et al.,
2001; Hunter and Nichols, 2002). Diarrhea may be
chronic and unremitting, leading to dehydration and
severe weight loss. Parasite infestation in immunocom-
petent hosts is primarily in the distal small intestine;
however, in immunocompromised hosts the entire 
gastrointestinal (GI) tract may be affected (Kosek et al.,
2001). In AIDS patients, parasites frequently lodge in the
bile ducts, making the organisms extremely difficult to
eradicate. There is also evidence that C. parvum infec-
tion may trigger or exacerbate inflammatory bowel
disease (IBD). Following a massive outbreak of cryp-
tosporidiosis in Milwaukee, a number of patients with
quiescent IBD progressed to active disease (Manthey et
al., 1997). Additionally, C. parvum DNA was found in a
low percentage of mucosal biopsies from patients with
IBD (Chen et al., 2001). In an animal model, C. parvum
alone is sufficient to trigger the onset of IBD-like syn-
drome (Sonea et al., 2002).

Outbreaks of cryptosporidiosis caused by ingestion of
oocyst-contaminated water have been frequent and well
documented (reviewed by Fayer et al., 2000). In the
most highly publicized outbreak, over 400 000 people
were reported to be infected by drinking water in
Milwaukee, Wisconsin in 1993 (MacKenzie et al., 1994,
1995). Water quality monitored at the treatment plants
remained within guidelines before and during the out-

break, although turbidity was increased, consistent with
spring runoff into Lake Michigan, the source of the city
water supply. Initial speculation as to the source of con-
tamination included cattle along the rivers flowing into
the lake, slaughterhouses and human sewage (Edwards,
1993). Subsequent to this outbreak, examination of
genetic polymorphisms has revealed at least two geno-
types of C. parvum (reviewed by Okhuysen and
Chappell, 2002). Type 1 (recently named
Cryptosporidium hominis, see Morgan-Ryan et al., 2002)
is found almost exclusively in humans, and is thought to
be responsible for anthroponotic transmission. Type 2 is
able to infect humans as well as cattle, rodents and pos-
sibly other species. This type is thought to be
responsible for zoonotic transmission of cryptosporidio-
sis (Kosek et al., 2001). Four isolates were typed from
the Milwaukee outbreak and proved to be of the type 1
genotype, suggesting that human sewage was responsi-
ble for the outbreak (Peng et al., 1997). However, the
possibility of more than one source remains, given that
only four samples were tested. While most waterborne
outbreaks of human disease in the US for which geno-
typing was done revealed C. parvum type 1 as the
probable source of infection, several large outbreaks in
Europe and elsewhere have identified type 2, implicat-
ing livestock in the zoonotic transmission of
cryptosporidiosis (Fayer et al., 2000). Thus, there
remains a great need to identify means of controlling C.
parvum infection in calves and other species, not only
to reduce the economic impact on the producer, but
also to alleviate environmental and public health con-
cerns.

Recent studies indicate that genetic recombination
occurs in C. parvum. Two varieties of the type 2 strain
were shown to recombine in infected mice to produce a
hybrid variant (Feng et al., 2002). These experimental
findings raise the question of whether recombination
occurs naturally and whether type 1 and 2 genotypes
can recombine. Also of interest is the recent suggestion
that several type 2 isolates may vary in virulence for
humans, as suggested by dose–response studies (Teunis
et al., 2002). While C. parvum is the species most com-
monly associated with human disease, both
immunocompetent and immunocompromised persons
may be infected with other species, including C. felis, C.
meleagridis and a dog genotype of C. parvum (Xiao et
al., 2001; Caccio et al., 2002; Chalmers et al., 2002; Ong
et al., 2002).

A major problem in controlling C. parvum is the lack
of effective means for preventing or treating infection. A
large number of antimicrobials have been tested for effi-
cacy (reviewed by Blagburn and Soave, 1997). Many of
these have shown some in vitro efficacy, i.e. ability to
block infection of cultured epithelial cells. However,
these results have not been replicated in controlled in
vivo trials. Several classes of compounds, including
macrolides, aminoglycosides and ionophores, have been
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tested against Cryptosporidium in AIDS patients, with
mixed success (Hunter and Nichols, 2002). One initially
promising drug, paromomycin, was recently demon-
strated to be no more effective than placebo in a
controlled trial (Hewitt et al., 2000). A number of com-
pounds are currently under investigation (Moore et al.,
2001; Nelson and Rosowsky, 2001; Gilles and Hoffman,
2002). The most effective means of controlling infection
in immunocompromised humans is to alleviate the
underlying immunodeficiency. Treatment with anti-retro-
viral agents or protease inhibitors, and the subsequent
increase in CD4+ T-lymphocyte counts, has been suc-
cessful in alleviating cryptosporidiosis in AIDS patients
(Hunter and Nichols, 2002).

There are few controlled studies of drug therapy
against cryptosporidiosis in farm animals. Most agents
tested have proven to be ineffective or toxic (Blagburn
and Soave, 1997). Paromomycin has been reported to be
efficacious in a controlled study in calves, but it is not
currently licensed for use in food animals (Fayer and
Ellis, 1993). In addition to the questionable value of
paromomycin in human cryptosporidiosis mentioned
above, the high cost of this drug makes it unlikely that it
will be of practical value in veterinary applications.
Numerous reports of success in treating bovine cryp-
tosporidiosis with off-label remedies, such as
decoquinate, may be found in veterinary discussion
forums on the internet. There is no evidence in the sci-
entific literature to support these claims (Lindsay et al.,
2000). It is likely that a remarkable array of compounds
will result in decreased infectious disease problems
when coupled with improved management and hygiene
(Harp and Goff, 1998). Once calves become infected,
the most effective treatment of cryptosporidiosis is sup-
portive therapy, i.e. electrolytes to maintain fluid
balance during bouts of diarrhea.

Specific immunity to C. parvum

Much remains to be learned about the mechanisms by
which specific immunity protects against C. parvum
infection. Infected animals produce systemic and local
antibody to parasite antigens, but there is no clear corre-
lation between the presence of antibody and protection
from disease (Whitmire and Harp, 1991; Peeters et al.,
1992). Efforts have been made to generate immune
responses to C. parvum through vaccination with either
whole-cell antigens or recombinant C. parvum proteins.
These studies involve vaccination of pregnant animals,
with the goal of protecting neonates through passive
transfer of antibody or other factors in colostrum and
milk. Transfer of relatively low-titered colostral antibody
from dams to calves did not protect against infection
(Harp et al., 1989); however, colostrums with higher
titers of antibody against C. parvum protected neonates
against experimental challenge (Fayer et al., 1989;

Perryman et al., 1999; Sagodira et al., 1999). Due to the
transient nature of colostral antibody in the gut (Butler,
1999), it is not clear how effective these regimens would
be under field conditions, when calves are continuously
exposed to virulent C. parvum in the first weeks and
months of life.

Studies of immunity against other intracellular para-
sites have shown that cell-mediated immune responses
are an important component of resistance. Data from
studies in mice suggest that intact cellular immunity is
critical for resistance to, and recovery from, C. parvum
(reviewed by McDonald and Bancroft, 1998; Theodos,
1998). Immunocompetent mice clear C. parvum infec-
tion at about 3 weeks of age, but various strains of
T-cell-deficient mice are unable to clear the infection,
and remain persistently infected as adults (Heine et al.,
1984a; Ungar et al., 1990; Harp et al., 1992; Waters and
Harp, 1996). Several studies have established a role for
interferon-γ (IFN-γ) in both resistance to and recovery
from C. parvum infection (Ungar et al., 1991; Chen et
al., 1993a, b). Similarly, studies of the cell-mediated
immune response of calves to C. parvum indicate that a
cellular response is present to parasite antigens
(Whitmire and Harp, 1991; Pasquali et al., 1997; Wyatt et
al., 1997, 1999, 2001; de Graaf et al., 1998; Fayer et al.,
1998).

Vaccination of newborn animals to stimulate an active
immune response is not well studied. We have demon-
strated that vaccination of newborn calves with killed C.
parvum protected against experimental challenge at 1
week of age (Harp and Goff, 1995). In a field trial, this
vaccine was ineffective, probably because calves were
exposed to virulent C. parvum within the first days of
life, before the vaccine was able to stimulate a protec-
tive response (Harp et al., 1996). It seems likely that a
successful strategy to protect newborn calves from C.
parvum will include stimulation of a non-specific
response in the first days of life, thus allowing time for
the generation of specific immunity to the parasite.

Role of intestinal flora in resistance to C. parvum

Cryptosporidiosis is most prevalent in the young animals
of susceptible species (reviewed by Casemore et al.,
1997). While C. parvum diarrhea is widespread in young
calves, it is virtually never seen in adult cattle, or even
in calves older than about 1 month (Angus, 1990; Casey,
1991). It is possible that changes in gut microflora, mat-
uration of the intestinal epithelium or other age-related
changes increase the resistance of older calves and adult
cattle to C. parvum infection (Akili and Harp, 2000).
Other studies have shown that, in addition to age-
related changes, exposure to the parasite results in an
immune response and subsequent resistance to reinfec-
tion (Harp et al., 1990; Whitmire and Harp, 1991).

We have used mice as a model to study the role of
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intestinal microflora in resistance to C. parvum. Adult
mice are highly resistant to infection, even in the
absence of any previous exposure to C. parvum
(Sherwood et al., 1982; Harp et al., 1988; Harp, 1996).
This age-related resistance begins at about 3 weeks of
age, coincident with the acquisition of mature intestinal
flora (Savage et al., 1968; Davis et al., 1973). The follow-
ing paragraphs summarize previously published studies
designed to define the role of intestinal flora in resist-
ance of adult mice to C. parvum.

Germ-free and conventional flora-bearing adult mice
were orally challenged with C. parvum oocysts. Mice
were killed 1 week after challenge and were examined
for evidence of C. parvum infection. C. parvum was
found in either colon content or intestinal tissue of all 29
adult germ-free mice. In contrast, C. parvum was not
seen in colon contents of any conventional adult mice,
and was seen in intestinal sections of only 5 of 31 mice
(Harp et al., 1988). These results suggested several pos-
sibilities. The physical presence of bacteria might block
receptor sites for the parasite, or the bacteria might pro-
duce substances toxic to C. parvum. Alternatively, the
presence of bacteria in the intestine might trigger some
component of the host immune system that increases
resistance to C. parvum infection.

We then performed the following experiments.
Conventionally reared adult mice, and germ-free adult
mice as controls, were treated with antibiotics to elimi-
nate culturable bacteria from their gastrointestinal tract.
All mice were then challenged with C. parvum and
killed 1 week later. C. parvum was found in 7 of 9
germ-free mice, but in only 4 of 12 conventional mice
(Harp et al., 1988). Thus, antibiotic-treated conventional
mice, although free of culturable bacteria, remained
more resistant to colonization with C. parvum than did
antibiotic-treated, germ-free mice. These results support
the hypothesis that the presence of bacteria in the intes-
tine is not the key component of resistance. These
results also confirm that the antibiotics used in the study
had no direct effect on C. parvum, since the antibiotic-
treated, germ-free mice remained susceptible.

These results suggest the possibility that the associa-
tion of bacteria with the intestinal immune system
provides a priming signal that results in enhanced resist-
ance to C. parvum infection. This resistance persists
even when the flora are removed. Our studies do not
exclude the possibility that intestinal flora not culturable
by our methods persisted in the antibiotic-treated mice.
However, in view of the increased susceptibility of mice
to other pathogens following similar antibiotic treatment
(Kennedy and Volz, 1983, 1985; Que and Hentges, 1985;
Ekenna and Scheretz, 1987), and the documented contri-
bution of intestinal flora to development of the immune
system (Olson and Wostmann, 1966; Gordon and Pesti,
1971), a role for flora in priming the immune system
against C. parvum infection seems likely.

To further examine the relationship between intestinal

flora and resistance to C. parvum, we studied infection
in severe combined immunodeficient (SCID) mice,
which lack both T- and B-lymphocyte subsets, due to a
genetic defect in rearrangement of receptor genes
(Bosma et al., 1983). These mice had been reported pre-
viously to be susceptible to chronic C. parvum infection
as adults (Mead et al., 1991). By assessing the effects of
intestinal flora in a host unable to generate a specific
immune response against C. parvum, we sought to fur-
ther define the relative importance of age-related and
specific immunity. We obtained CB-17/IcrTac-scid
(SCID) and CB-17/IcrTac (control, immunologically nor-
mal) flora-bearing mice, as well as germ-free SCID mice.
In our initial studies, we confirmed that the flora-bearing
SCID mice became chronically infected with C. parvum,
while the immunologically normal control mice did not
(Harp et al., 1992). However, the SCID mice did not
begin to show colonization with C. parvum until 5–7
weeks after challenge (Harp et al., 1992). We were
struck by the ability of these severely immunocompro-
mised mice to resist infection for several weeks
following exposure. To determine whether intestinal
flora played a role in this early resistance to C. parvum,
we challenged both flora-bearing and germ-free SCID
mice with C. parvum, and examined intestinal tissues for
signs of infection. Germ-free SCID mice were heavily
infected with C. parvum 3 weeks after challenge, while
no parasites were found in intestines of flora-bearing
SCID mice 3 weeks after challenge (Harp et al., 1992).
These data indicated that intestinal flora contributed to
resistance of adult mice to C. parvum infection, even in
the absence of a specific immune response.

Previous studies have indicated that IFN-γ is a key
mediator in resistance to, and recovery from, C. parvum
infection (Ungar et al., 1991; Chen et al., 1993a, b). It is
also known that SCID mice are able to produce IFN-γ
through a non-T-cell pathway, and this pathway has
been shown to be important in the resistance of SCID
mice to other intracellular pathogens (Bancroft et al.,
1991). Production of IFN-γ can be stimulated by the
presence of an intestinal flora (Wherry et al., 1991). In
sum, these studies suggest that increased susceptibility
to C. parvum seen in germ-free adult mice (and neona-
tal mice before the acquisition of intestinal flora) may be
due, at least in part, to deficiencies in IFN-γ production.

To further examine this possibility, we studied the
effects of colonization with lactic-acid producing bacte-
ria (Lb) on susceptibility of immunodeficient adult mice
to C. parvum. Studies in mice have shown that coloniza-
tion of the intestine with Lb can have beneficial effects,
including increased resistance to pathogens (De Simone
et al., 1993, 1995). Several studies have shown that dos-
ing of mice with Lb resulted in reduced colonization
following challenge with C. parvum (De Simone et al.,
1995; Alak et al., 1997). Lactobacillus reuteri was shown
to diminish infection with C. parvum in mice rendered
immunodeficient by a murine retrovirus (Alak et al.,
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1997). It is thought that L. reuteri inhibits infection
through production of an antimicrobial substance,
reuterin (Casas and Dobrogosz, 1997). We examined the
effects of L. reuteri on C. parvum infection in T-cell
receptor (TCR)α-deficient mice. These mice lack αß T
lymphocytes and become chronically infected with C.
parvum when exposed as either neonates or adults
(Waters and Harp, 1996). Subsequent to infection, they
show rapid onset of inflammatory bowel disease, which
we have shown can be triggered by C. parvum in the
absence of any other intestinal flora (Sacco et al., 1998).
We found that colonization with L. reuteri lessened the
severity of C. parvum infection, and reduced the degree
of inflammation due to IBD (Waters et al., 1999).

In order to examine mechanisms by which Lb might
reduce C. parvum infection, we performed further stud-
ies with germ-free SCID mice. Four groups of mice were
housed in separate isolators. The first and fourth groups
received five oral doses of phosphate-buffered saline
(PBS) every other day for 10 days. The second and third
groups received five doses of Lb. Bacterial preparations
consisted of 1011 viable bacteria per dose and contained
a mixture of Streptococcus, Bifidobacterium and
Lactobacillus spp. (Harp, 1996). One week after comple-
tion of dosing, fecal pellets were cultured to confirm
colonization of mice in groups 2 and 3 with Lb. Mice in
groups 1 and 2 were then challenged with C. parvum.
Three weeks later, all mice were killed. One half of the
ileum, cecum and colon was fixed in formalin and
processed for histological examination for C. parvum
infection. Tissues were scored as 0, no C. parvum
found; 1, few C. parvum found; 2, many C. parvum
found. The mucosa was stripped from the other half and
processed for mRNA extraction (Chomczynski and
Sacchi, 1987). Gene transcript levels were measured by
reverse transcriptase polymerase chain reaction (PCR),
as described previously (Havell and Rogerson, 1993).
Germ-free SCID mice challenged with C. parvum were

more heavily infected than were SCID mice colonized
with Lb (ileal/cecal score of 1.7 versus 0.8, and colon
score of 0.3 versus 0.0, respectively). No C. parvum was
found in the control groups 3 and 4 (Harp, 1996). PCR
products for IFN-γ mRNA were seen for each individual
mouse in groups 1 and 2, and no bands were seen from
any mice in groups 3 and 4 (Fig. 1). Thus, colonization
of the intestine with Lb appeared to reduce infection
with C. parvum. However, there was not a correlation
between colonization with Lb and expression of IFN-γ
mRNA in intestinal tissues. Rather, those mice chal-
lenged with C. parvum expressed IFN-γ mRNA,
regardless of whether they were colonized with Lb. In
addition, mice colonized with Lb alone did not express
measurable IFN-γ mRNA, at the time point assayed in
these studies.

These results suggest that colonization of the mice
with Lb may be protecting them from C. parvum infec-
tion by a mechanism not directly involving IFN-γ.
Alternatively, IFN-γ may have been induced early in the
mice receiving Lb alone, and disappeared by the time of
necropsy. In the mice that received both Lb and C.
parvum, the additional stimulation may have resulted in
increased levels of IFN-γ that were measurable at the
time of necropsy. It has been reported that interleukin-
12 induced a transient increase in IFN-γ mRNA, while C.
parvum induced a longer-lasting increase (Urban et al.,
1996). It is possible that Lb might provide a non-specific
stimulus for IFN-γ production prior to C. parvum infec-
tion, which is able to modulate the immune response
and lessen the severity of infection. Further study would
be required to distinguish among these possibilities. In
sum, although the mechanism remains undefined, these
studies clearly indicate that intestinal microflora are able
to mediate resistance to C. parvum infection in both
immunocompetent and immunocompromised mice.
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Fig. 1. Agarose gel (1.4%) of PCR products stained with ethidium bromide. (A) IFN-γ cDNA from individual samples
from mice in the four groups (bottom bands) and corresponding IFN-γ MIMIC (top bands). Lanes 1–3, PBS + C.
parvum; 4–7, Lb + C. parvum; 8–11, Lb alone; 12–14, PBS alone; and 15, control, no RNA template. (B) β-Actin cDNA
from individual samples from mice in the four groups (top bands) and corresponding β-actin MIMIC (bottom bands).
Lanes are the same as for (A). (Reprinted with permission from Harp, Journal of Immunology and
Immunopharmacology 16: 11–16, 1996.)



Resistance factors in intestinal mucosa

The experiments described above demonstrated that
immunocompetent adult mice remained resistant to C.
parvum infection even after depletion of existing intes-
tinal microflora. In addition to possible effects on
stimulation of the immune response, these data suggest
that a physiological change that accompanies maturation
of the intestinal mucosa may contribute to the resistance
of adult animals to C. parvum. Thus, we hypothesized
that a protective factor might be present in adult intes-
tine that could transfer resistance to an otherwise
susceptible infant. To test this hypothesis, we scraped
intestinal mucosa from the ilea of adult rats (not previ-
ously exposed, but innately resistant to C. parvum
infection), suspended it in PBS, and fed it to infant rats
(normally susceptible to C. parvum infection). Rats
received mucosal preparations starting at 3 days of age
and continuing until 14 days of age. Control rats
received PBS alone, or were not treated. All rats were
challenged with C. parvum at 9 days of age. Rats were
necropsied at 15 days of age and assessed for evidence
of C. parvum infection by examination of colon content,
and histological examination of ileal tissue for parasites.
We found that there was a significant reduction in both
the percent of rat pups with oocysts present in feces,
and with parasites present in ileal tissue in the group
receiving mucosal preparations compared with controls
(Akili and Harp, 2000). Interestingly, pups in the group
receiving mucosal preparations that did become infected
with C. parvum, had significantly fewer oocysts in feces
compared with numbers of oocysts seen in the feces of
pups not receiving mucosal preparations. Thus, the
mucosal preparation reduced both numbers of animals
infected, and the severity of infection in animals not
fully protected from infection (Akili and Harp, 2000). To
determine if the activity of the preparation was species
specific, we treated infant rats with ileal mucosal prepa-
rations from bovine calves that had been exposed to C.
parvum previously and recovered from infection. This
preparation had no effect on the susceptibility of the
infant rats to C. parvum infection. However, when infant
rats were treated with mucosal preparations from adult
cows, they were protected to a similar degree as was the
group that received adult rat mucosal preparations (Akili
and Harp, 2000). Based on previous studies, calves that
recover from C. parvum infection are resistant to re-
infection (Harp et al., 1990). Thus, it would appear that
even though the calves donating the mucosal prepara-
tions in this study were no longer susceptible to
infection with C. parvum themselves, they had not yet
developed the more mature intestinal characteristics nec-
essary to supply the protective factor to the infant rat
recipients.

Based on our previous studies, indicating that bacter-
ial flora induced protection against C. parvum infection
in mice, it was possible that transferring the mucosal

preparations from adult animals introduced bacterial
species into the infant intestine that conferred resistance
to C. parvum infection. To determine if the protective
activity in the adult rat mucosa was a result of introduc-
ing adult microflora, the mucosal preparation was
subjected to irradiation, sufficient to kill any live bacte-
ria. Following irradiation, no bacteria were found on
aerobic and anaerobic cultures of the preparation. The
irradiated preparation was then fed to infant rats and
found to reduce infection with C. parvum to a similar
degree as seen in the group receiving non-irradiated
adult rat intestinal scrapings (Akili and Harp, 2000).
These data indicate that live bacteria were not required
for the protective effect of the preparation. It is still pos-
sible that the effects may be mediated by a bacterial
product not affected by the irradiation process.

Boiling the intestinal preparation resulted in a loss of
protective activity. The percentage of infected animals in
the group receiving boiled scrapings was similar to that
seen in the control group (Akili and Harp, 2000). This
indicated that the substance responsible for the activity
in the preparation was heat labile. There are a number
of bacterial toxins that are heat labile, as well as several
that are heat stable (Guerrant et al., 1999). In addition, a
myriad of host cellular components may be present in
the scrapings preparations, some of which would be
heat labile, including most proteins.

We also tested mucosal preparations from adult cows
for effectiveness in protecting infant mice from C.
parvum infection. We dosed infant mice with mucosal
preparations twice daily from 5 to 9 days of age, and
challenged them with C. parvum at 7 days of age.
Control mice were not treated with mucosal preparation,
but were similarly challenged with C. parvum at 7 days
of age. At 14 days of age all mice were killed and exam-
ined for infection. Ten of 11 control mice were infected
with C. parvum, while only 1 of 7 treated mice was
infected (Akili and Harp, unpublished). In sum, these
data indicate that the intestinal mucosa of adult animals
(at least rats and cows) resistant to C. parvum contains a
substance that, when fed to susceptible infant rats and
mice, can transfer protection against C. parvum infec-
tion.

Changes in intestinal epithelium following C. parvum
infection

In mice and other rodents, expression of intestinal
enzymes is a developmentally regulated event (Quaroni,
1985; Henning, 1987). Before weaning, lactase is
expressed on the brush borders of epithelial cells, and
sucrase is essentially absent. Around the time of wean-
ing (about 3 weeks of age in mice), sucrase increases,
and lactase decreases to low levels. We compared the
expression of these two enzymes in normal mice, and
mice infected with C. parvum at 1 week of age, using a
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standard colorimetric assay (Harp et al., 1999). In normal
mice, sucrase was essentially absent at 1 week, 10 days
and 2 weeks of age, and then rose sharply at 3 weeks.
Lactase was elevated at 1 week, 10 days and 2 weeks,
and then dropped to low levels at 3 weeks. In contrast,
in mice infected with C. parvum at 1 week of age,
sucrase increased at 2 weeks, and lactase decreased to
low levels at 2 weeks (Fig. 2). These data suggested that
infection with C. parvum accelerated the onset of
mature epithelial-cell phenotype, i.e. increased expres-
sion of sucrase and decreased expression of lactase.

A further measure of epithelial cell maturation is rate
of proliferation. In rodents, epithelial cell proliferation is
low in the first 2 weeks of life, and then increases dra-
matically beginning in the third week after birth (Klein,
1989). We compared proliferation by crypt epithelial cells
in normal and C. parvum-infected mice. In both groups,
at 1 week and 10 days of age, 25–50% of the cells in the
crypt zone were found to be proliferating. At 2 weeks of
age, 50% of the cells in normal mice were proliferating;
in contrast, in C. parvum-infected mice, nearly all cells
were proliferating (Harp et al., 1999). Thus it appears
that proliferation of intestinal epithelial cells is increased
in mice following infection with C. parvum.

The changes seen in expression of sucrase and lactase
could be related to the increased epithelial cell prolifera-
tion seen in mice infected with C. parvum. Intestinal
epithelial cells may be programmed to begin expressing
more sucrase and less lactase once a certain number of
cell divisions have occurred. The increased proliferation
of epithelial cells in mice infected with C. parvum
would result in the critical number of divisions being
reached sooner (2 weeks of age rather than 3 weeks)
and in accelerated expression of the ‘mature’ phenotype
with respect to enzyme expression.

Changes in the phenotype of intestinal epithelial cells,
either following C. parvum infection or as a result of nor-
mal maturation, might be relevant to increased resistance
to infection. It has been reported that C. parvum infec-
tion of the intestinal epithelium may involve interaction
of a lectin-like receptor with simple sugars or complex
carbohydrates (Kuhls et al., 1991; Thea et al., 1992; Llovo
et al., 1993). One might hypothesize that expression of
sucrase may be regulated coordinately with expression
of a lectin-like receptor that is critical for C. parvum
infection of intestinal epithelium. For example, expres-
sion of sucrase may be accompanied by downregulation
of such a receptor, or may sterically hinder interaction of
that receptor with the parasite. Interestingly, we found
that feeding sucrose to infant mice increased resistance
to C. parvum infection (Harp, 1999).

Conclusions

It is clear that there is still much to be learned about the
complex interactions between innate and specific

immune response, physiological maturation, and the
role of intestinal flora in mediating resistance to C.
parvum infection. It seems to be well established that
both CD4+ cells and IFN-γ are important for resistance
to, and recovery from, C. parvum infection in mice
(reviewed by Theodos, 1998; Riggs, 2002). Studies in
both murine and bovine systems suggest a role for CD8+

intraepithelial lymphocytes as well (Abrahamsen et al.,
1997; Wyatt et al., 1997: reviewed by Riggs, 1997).
Studies outlined in this review suggest that at least one
additional factor critical to resistance to C. parvum is (or
is triggered by) the presence of intestinal microflora. In
addition to studies in mice, it is interesting to note that
development of resistance to C. parvum in bovine
calves may be correlated with the development of intes-
tinal and rumenal microflora (Harp et al., 1990). One
may further speculate that, in addition to the deficit of
CD4+ lymphocytes seen in AIDS patients, poor nutrition
and antibiotic therapy might, in some cases, result in
altered microflora in these individuals, which could then
contribute to increased susceptibility to C. parvum infec-
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Fig. 2. Levels of sucrase [�] and lactase [�] in ileal tis-
sues of (A) normal mice, and (B) mice infected with C.
parvum at 1 week of age. Data are presented as mean
optical density reading ± SEM, minimum of 10 mice per
group. (Reprinted with permission from Harp et al.,
Journal of Eukaryotic Microbiology 46: 64–65S, 1999.)



tion. Preliminary studies indicate that treatment of C.
parvum-infected AIDS patients with Lb may be of bene-
fit in alleviating symptoms (De Simone et al., 1995). The
presence of a substance in intestinal mucosa of adult
animals resistant to C. parvum that can transfer resist-
ance to susceptible infants supports the hypothesis that
maturational changes in the intestine also contribute to
host resistance to infection. That C. parvum itself can
alter developmentally regulated expression of intestinal
enzymes is also an intriguing finding, and may be rele-
vant to the apparent window of susceptibility in species,
such as bovine calves, that mature in an environment
often heavily contaminated with the parasite.
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